skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barram, Kassidy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 19, 2026
  2. Free, publicly-accessible full text available December 16, 2025
  3. Scientists design models to understand phenomena, make predictions, and/or inform decision-making. This study targets models that encapsulate spatially evolving phenomena. Given a model, our objective is to identify the accuracy of the model across all geospatial extents. A scientist may expect these validations to occur at varying spatial resolutions (e.g., states, counties, towns, and census tracts). Assessing a model with all available ground-truth data is infeasible due to the data volumes involved. We propose a framework to assess the performance of models at scale over diverse spatial data collections. Our methodology ensures orchestration of validation workloads while reducing memory strain, alleviating contention, enabling concurrency, and ensuring high throughput. We introduce the notion of a validation budget that represents an upper-bound on the total number of observations that are used to assess the performance of models across spatial extents. The validation budget attempts to capture the distribution characteristics of observations and is informed by multiple sampling strategies. Our design allows us to decouple the validation from the underlying model-fitting libraries to interoperate with models constructed using different libraries and analytical engines; our advanced research prototype currently supports Scikit-learn, PyTorch, and TensorFlow. 
    more » « less